

THE ROLE OF ENERGY STORAGE IN DECARBONISATION OF DIFFERENT POWER SYSTEMS

Fan He, Centre for Environment and Sustainability (CES), University of Surrey

CONTENT

Background Methodology

Results

Summary

BACKGROUND

Introduction to energy storage and power systems

WHY DO WE NEED ENERGY STORAGE

Peak shaving refers to the practice of shaving off the peaks of electricity usage during periods of high demand by shifting non-essential loads to off-peak hours

Source: batteryblokk; Beuse et al. (2021)

Source: Ajanovic et al. (2020)

STATUS QUO OF ENERGY STORAGE DEVELOPMENT

BATTERY STORAGE DEVELOPMENT

Source: CNESA Energy Storage Industry White Paper 2023;

TWO CONFIGURATIONS OF POWER GENERATION SYSTEMS AND ENERGY STORAGE

Source: Zantye et al. (2022)

DIFFERENT POWER SYSTEMS

Installed capacity mix of different power system in 2022

Source: collected from public data

METHODOLOGY

FRAMEWORK

Aim: To explore the direct and indirect economic and environmental impacts of energy storage on decarbonisation of power systems

Objective function:

Minimise operating costs and investment costs of capacity expansion of power system

Constraints:

Power output Power balance Energy storage Carbon limits

Variables:

Planning installed capacity; hourly power output; hourly charging and discharging power; hourly energy storage

coal-fired generation gas-fired generation nuclear power generation wind power generation solar power generation pumped hydro storage (PSH) battery storage (BESS)

hydro generation

hydro generation coal-fired generation gas-fired generation **Biomass generation** nuclear power generation wind power generation solar power generation pumped hydro storage (PSH) battery storage (BESS) flywheels storage

The UK's power system

SCENARIO DESIGN

	Description	Capacity in 2025 (MW)
China	Base	PSH: 62000
		BESS: 30000
	Medium-growth capacity: 20% higher than BAU for PSH; 50% higher than BAU for	PSH: 74400
	BESS	BESS: 45000
	High-growth capacity: 40% higher than BAU for PSH; 100% higher than BAU for	PSH: 86800
	BESS	BESS: 60000
UK		PSH: 2800
	Base	BESS: 10000
		Flywheels: 400
	Medium-growth capacity: 20% higher than BALL for PSH: 50% higher than BALL for	PSH: 3360
	RESS and Elywheels	BESS: 15000
	DESS and Hywheels	Flywheels: 600
	High-growth capacity: 40% higher than BAU for PSH; 100% higher than BAU for	PSH: 3920 BESS: 20000
	BESS and Flywneels	Flywheels: 800

INPUT-OUTPUT MODEL EXAMPLE

INPUT-OUTPUT MODEL

$$\mathbf{X} = (\mathbf{I} - \mathbf{A})^{-1}\mathbf{F}$$

where

X represents the total outputs by sector after changes

I is a unit matrix

A is the matrix of direct input coefficients of domestic products in original IO tables, $a_{ij}=z_{ij}/x_j$

F represents the final demand by sector after changes

COPULA FUNCTION

A good tool to solve joint distribution problems between multiple correlated variables

INPUT-OUTPUT MODEL

		sectors							то
		Ι	•••	Ν	n		n+k		
	I	ZN			Z ^{Ne}			F	X
sectors	•							N	Ν
	Ν								
	n	ZeN			Ze			Fe	Ve
	• •								
	n+k								
TVA		٧N			Ve				
TTI			۲N		Ye				
Emission account									

$$B = \mathbf{E}(\mathbf{I} - \mathbf{A})^{-1}\mathbf{F}$$

where

B represents the total the carbon emissions;E represents the carbon emissions per unit of output of each sector

RESULTS

OPTIMISATION MODEL RESULTS FOR CHINA

Scenario: PSH: 62000 MW BESS: 30000 MW

Scenario: PSH: 74400 MW BESS: 45000 MW Scenario: PSH: 86800 MW BESS: 60000 MW

OPTIMISATION MODEL RESULTS FOR UK

SUMMARY

SUMMARY

The most important role of energy storage is peak shaving

Impacts mechanism:

THANK YOU

Q & A

Fan He f.he@surrey.ac.uk www.surrey.ac.uk/ces

