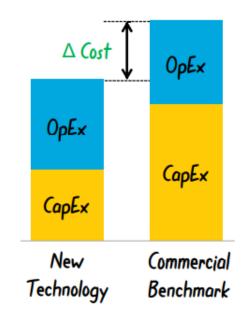
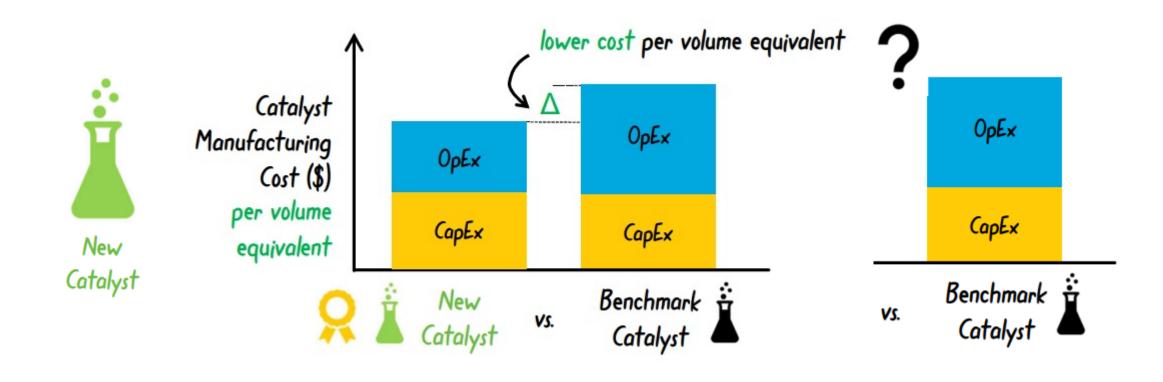

# TECHNO-ECONOMIC ASSESSMENT

Techno-economic assessment is a method for evaluating the economic performance of a technology

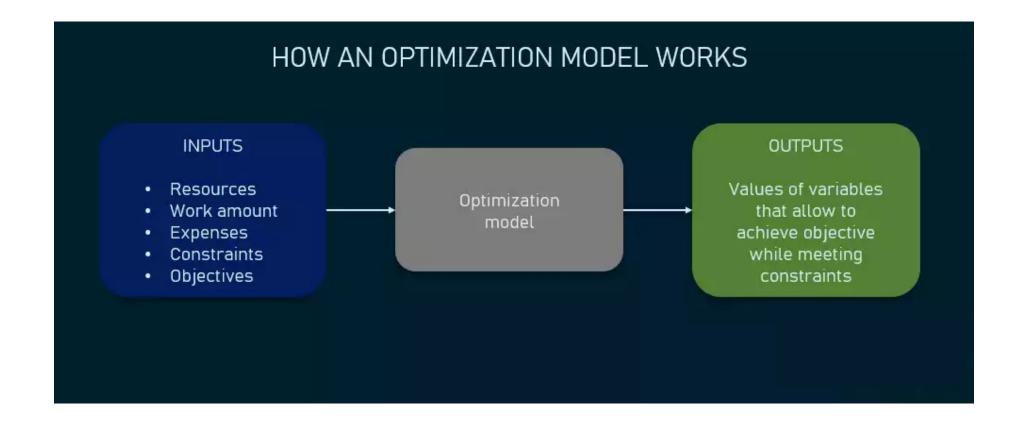



# MANUFACTURING COST COMPARISON

## Manufacturing Cost



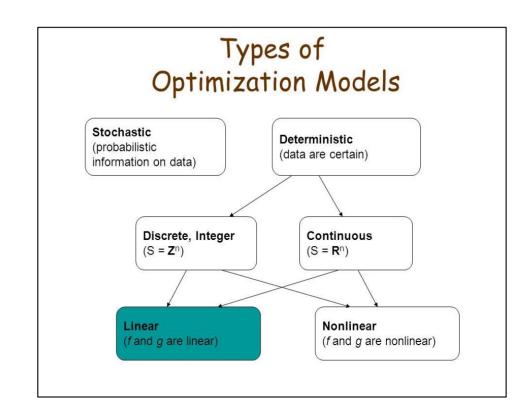




# Cost Benchmarking

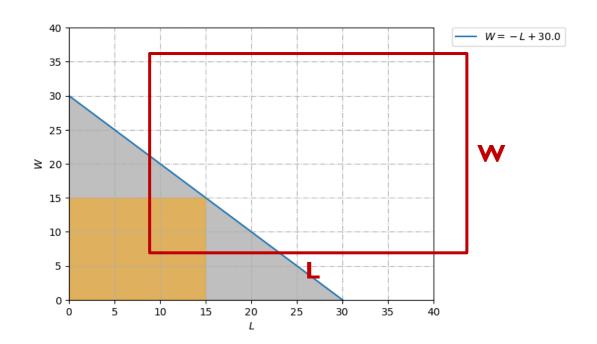


# EXAMPLE COST COMPARISON: CATALYSTS FOR ETHYLENE MANUFACTURING




# OPTIMIZATION MODEL (BOTTOM-UP ENERGY MODEL)




# FEATURE OF OPTIMIZATION MODEL

An optimization model has three main components:

- An objective function. This is the function that needs to be optimized.
- A collection of decision variables. The solution to the optimization problem is the set of values of the decision variables for which the objective function reaches its optimal value.
- A collection of constraints that restrict the values of the decision variables.



# SIMPLE EXAMPLE OF OPTIMIZATION

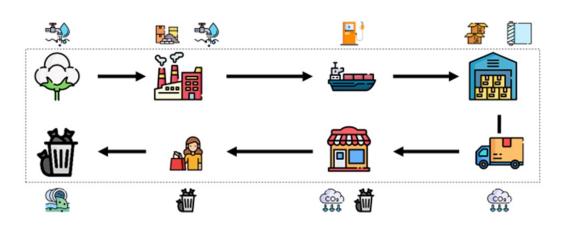


- Example: You have 60 feet of fence available, and wish to enclose the largest rectangular area possible. What dimensions should you choose for the fenced-off area?
- Variables: Length L, Width W;
- Objectives: max L\*W;
- Constraints:

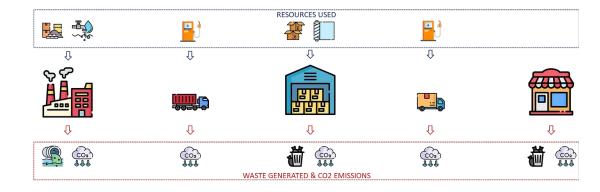
$$2L + 2W \le 60$$

$$L > 0$$

$$W > 0$$

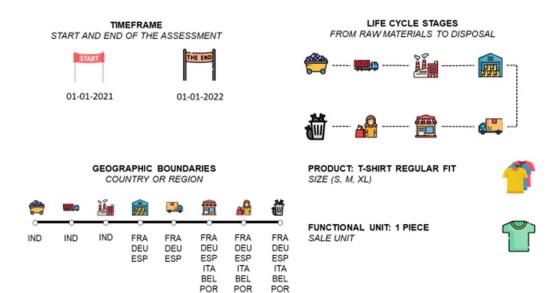

Result: when L=W=15, max area = 225

# LIFE CYCLE ASSESSMENT (LCA)

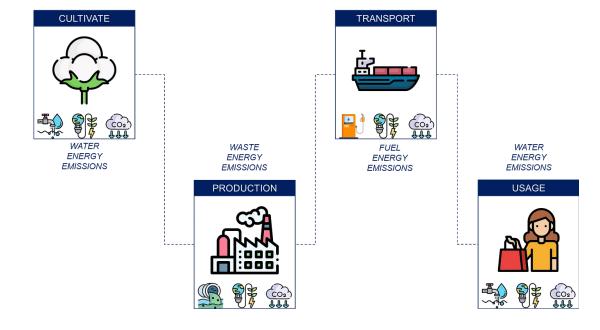

What is a Life Cycle Assessment?

#### What is a Life Cycle Assessment?

Use Data Analytics to evaluate the environmental impacts of a fast-fashion retail product over its entire life cycle from production to disposal




What is the environmental impact of the cheap t-shirt?

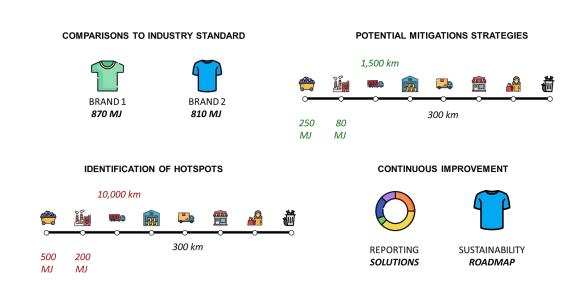



# FOUR STEPS OF LCA

#### I. Goal and scope definition

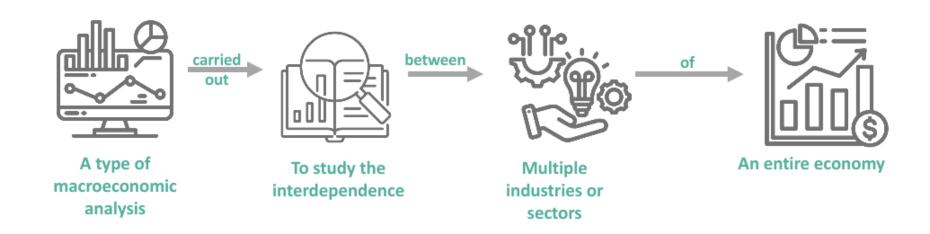


#### 2. Inventory Analysis




## FOUR STEPS OF LCA

#### 3. Impact assessment


- Energy consumption: 870 MJ -- 58% consumed during the production
- Greenhouse gas emissions: 46 kg CO2e -- With a majority of emissions during production
- Water consumption: 3,500 L -- 57% consumed during production
- Solid waste: 0.5 kg -- generated during production
- Air pollution: 0.8 g of SOx and 0.5 g of NOx emissions -- emitted during transportation

#### 4. Interpretation and evaluation



# INPUT-OUTPUT ANALYSIS (TOP-DOWN ENERGY MODEL)

#### **Input-Output Analysis**



# INPUT-OUTPUT TABLE EXAMPLE

### Input flow from other industries to Industry I

Output flow from Industry I to other industries

| То                       |            |          | Industry |                 |                 | Final demand categories (F) |                |             |        |           |
|--------------------------|------------|----------|----------|-----------------|-----------------|-----------------------------|----------------|-------------|--------|-----------|
| From                     |            | 1        | 2        | 3               | 4               | Households                  | Government     | Investments | Export | Total (X) |
|                          | 1          | $z_{11}$ | $z_{12}$ | $z_{13}$        | $z_{14}$        | $c_1$                       | $g_1$          | $i_1$       | $e_1$  | $X_1$     |
| Industry                 | 2          | $z_{21}$ | $z_{22}$ | $z_{23}$        | $z_{24}$        | $c_2$                       | $g_2$          | $i_2$       | $e_2$  | $X_2$     |
|                          | 3          | $z_{31}$ | $z_{32}$ | $z_{33}$        | $z_{34}$        | $c_3$                       | $g_3$          | $i_3$       | $e_3$  | $X_3$     |
|                          | 4          | $z_{41}$ | $z_{42}$ | z <sub>43</sub> | z <sub>44</sub> | $c_4$                       | g <sub>4</sub> | $i_4$       | $e_4$  | $X_4$     |
| Primary input<br>factors | Labor      | $l_1$    | $l_2$    | $l_3$           | $l_4$           |                             |                |             |        | L         |
|                          | Capital    | $k_1$    | $k_2$    | $k_3$           | $k_4$           |                             |                |             |        | K         |
|                          | Government | $o_1$    | $o_2$    | 03              | 04              |                             |                |             |        | О         |
|                          | Import     | $m_1$    | $m_2$    | $m_3$           | $m_4$           |                             |                |             |        | М         |
| Total<br>(Z)             |            | $Z_1$    | $Z_2$    | $\mathbb{Z}_3$  | $Z_4$           | С                           | G              | I           | Е      |           |
|                          |            |          |          |                 |                 |                             |                |             |        |           |

# INPUT-OUTPUT TABLE EXAMPLE

#### **External economic shock**

|                          | To Industry |          |                 |                 | Final demand categories (F) |            |                |             |        |           |
|--------------------------|-------------|----------|-----------------|-----------------|-----------------------------|------------|----------------|-------------|--------|-----------|
| From                     |             | 1        | 2               | 3               | 4                           | Households | Government     | Investments | Export | Total (X) |
| Industry                 | 1           | $z_{11}$ | $z_{12}$        | $z_{13}$        | $z_{14}$                    | $c_1$      | $g_1$          | $i_1$       | $e_1$  | $X_1$     |
|                          | 2           | $z_{21}$ | $z_{22}$        | $z_{23}$        | $z_{24}$                    | $c_2$      | $g_2$          | $i_2$       | $e_2$  | $X_2$     |
|                          | 3           | $z_{31}$ | $z_{32}$        | $z_{33}$        | $z_{34}$                    | $c_3$      | $g_3$          | $i_3$       | $e_3$  | $X_3$     |
|                          | 4           | $z_{41}$ | Z <sub>42</sub> | z <sub>43</sub> | z <sub>44</sub>             | $c_4$      | g <sub>4</sub> | $i_4$       | $e_4$  | $X_4$     |
| Primary input<br>factors | Labor       | $l_1$    | $l_2$           | $l_3$           | $l_4$                       |            |                |             |        | L         |
|                          | Capital     | $k_1$    | $k_2$           | k <sub>3</sub>  | $k_4$                       |            |                |             |        | K         |
|                          | Government  | $o_1$    | 02              | 03              | 04                          |            |                |             |        | О         |
|                          | Import      | $m_1$    | $m_2$           | $m_3$           | $m_4$                       |            |                |             |        | М         |
| Total<br>(Z)             |             | $Z_1$    | $Z_2$           | $\mathbb{Z}_3$  | $Z_4$                       | С          | G              | I           | Е      |           |

- External economic shocks result in the unbalance of the I-O table;
- I-O table has to be rebalanced to reveal the influence on the whole economic system.
- I-O table can also be extended to analyze environmental impacts, such as carbon emission and air pollution and energy consumption.

# **EXAMPLE**

#### External Shock

- Energy prices surged 20%
- The price of each barrel of crude oil increased and averaged \$106.96, up by 15.3% (used to be \$92.77).

#### Direct Impact

- Consumers primarily purchase less durable goods, such as new houses and cars;
- Firms minimize their investment spending owing to uncertainty.

#### Spillover Effect

- Impact on real GDP;
- Lead to a fall in social surplus, decelerating economic growth;
- Result in higher global costs.