

ENERGY MODELLING FOR ALL

Dr Lirong Liu

Centre for Environment and Sustainability (CES)

University of Surrey

RESEARCH PUBLICATIONS NEWS & BLOGS EVENTS INTERACTIVE ABOUT

Q

Energy Modelling for All

UKERC

Energy modelling plays a vital role in the transition to a net zero economy and contributes to energy security, with models underpinning decision making across policy, industry and civil society.

However, the energy sector remains one of the least gender diverse and women are significantly underrepresented in the energy modelling research area. Therefore, it is essential to build a network with multiple resources to encourage women from different disciplines and sectors to join energy modelling research and application.

This project will open doors for women throughout the energy community, including academic researchers, companies along the energy supply chain, policymakers in both central and local government, NGOs and practitioners.

Research Activity

Whole Systems Networking Fund: Phase 4

Project team

Lirong Liu

Nayanee Silva

Xinyao Liu

AIM

- Build a diverse network in energy modelling from different disciplines (e.g., social sciences, engineering, and economics) and different sectors (e.g., local authority, industry, and NGO).
- Establish a platform with open learning resources to provide a quick and fun way to begin to become familiar with the identified energy modelling and to enable the discussion among peer community.
- Host a series of events with hands-on learning, mentorship by energy modelling practitioners and supportive peer community to enable more women to use energy modelling to solve practical problems.

WORK PACKAGES

INTRODUCTIONS & WARM-UP ACTIVITY

Nayanee Silva

GET TO KNOW YOU BINGO

COFFEE BREAK

GROUP DISCUSSION

MODELLING PROBLEMS

LUNCH

INTRODUCTION TO ENERGY MODELLING

Jiatai Wang, Centre for Environment and Sustainability (CES), University of Surrey

CONTENT

Background Methodology Application

Takeaways

BACKGROUND

What is energy modelling and what are the energy models in the UK?

ENERGY MODELLING

Energy modelling refers to the process of using mathematical and computational models to analyze and predict various aspects of energy systems. It involves simulating the behavior and interactions of different energy sources, technologies, and policies to assess their impacts and inform decision-making.

Source: https://www.energycharter.org/fileadmin/DocumentsMedia/EU4Energy/20180926_AZ_Energy_Strategy_MarkusFP_Introduction_to_energy_modelling_FINAL_EN.pdf

ENERGY MODELS OF THE UK

UK energy models by host organization

Development of UK energy modelling capacity Analytical methods of UK energy models

ENERGY MODELS OF THE UK

Sectoral coverage of energy models

Energy vector coverage of UK models

TIME TRENDS OF MAJOR APPLICATION OF ENERGY MODELS

Figure 9: Time trend of major applications of energy models

Source: Energy Modelling in the UK Briefing paper I: The modelling landscape

METHODOLOGY

Types and key Processes of energy modelling

TECHNO-ECONOMIC ASSESSMENT

Techno-economic assessment is a method for evaluating the economic performance of a technology

Source: https://www.energy.gov/sites/default/files/2022-01/2022-01-19%20-%20Intro%20to%20TEA%20-%20Slides%20and%20Transcript_compliant_1_0.pdf

MANUFACTURING COST COMPARISON

Manufacturing Cost

Cost Benchmarking

Source: https://www.energy.gov/sites/default/files/2022-01/2022-01-19%20-%20Intro%20to%20TEA%20-%20Slides%20and%20Transcript_compliant_1_0.pdf

EXAMPLE COST COMPARISON: CATALYSTS FOR ETHYLENE MANUFACTURING

Source: https://www.energy.gov/sites/default/files/2022-01/2022-01-19%20-%20Intro%20to%20TEA%20-%20Slides%20and%20Transcript_compliant_1_0.pdf

OPTIMIZATION MODEL (BOTTOM-UP ENERGY MODEL)

Source: https://www.altexsoft.com/blog/schedule-optimization/

FEATURE OF OPTIMIZATION MODEL

An optimization model has three main components:

- An objective function. This is the function that needs to be optimized.
- A collection of decision variables. The solution to the optimization problem is the set of values of the decision variables for which the objective function reaches its optimal value.
- A collection of constraints that restrict the values of the decision variables.

SIMPLE EXAMPLE OF OPTIMIZATION

- Example: You have 60 feet of fence available, and wish to enclose the largest rectangular area possible. What dimensions should you choose for the fenced-off area?
- Variables: Length L, Width W;
- Objectives: max L*W;
- Constraints:

Result: when L=W=15, max area = 225

LIFE CYCLE ASSESSMENT (LCA)

What is a Life Cycle Assessment?

What is a Life Cycle Assessment?

Use Data Analytics to evaluate the environmental impacts of a fast-fashion retail product over its entire life cycle from production to disposal

What is the environmental impact of the cheap t-shirt?

FOUR STEPS OF LCA

I. Goal and scope definition

2. Inventory Analysis

Source: https://www.bpf.co.uk/sustainable_manufacturing/life-cycle-analysis-lca.aspx

FOUR STEPS OF LCA

3. Impact assessment

- Energy consumption: 870 MJ -- 58% consumed during the production
- Greenhouse gas emissions: 46 kg CO2e -- With a majority of emissions during production
- Water consumption: 3,500 L -- 57% consumed during production
- Solid waste: 0.5 kg -- generated during production
- Air pollution: 0.8 g of SOx and 0.5 g of NOx emissions -- emitted during transportation

4. Interpretation and evaluation

INPUT-OUTPUT ANALYSIS (TOP-DOWN ENERGY MODEL)

Input-Output Analysis

INPUT-OUTPUT TABLE EXAMPLE

Final demand categories (F) То Industry Households Government Total (X) From 2 3 Export 1 4 Investments X_1 1 z_{11} i_1 z_{12} z_{13} c_1 \mathbf{g}_1 e_1 z_{14} Industry **Output flow from** X_2 $\mathbf{2}$ z_{21} z_{22} z_{23} c_2 g_2 i_2 z_{24} e_2 Industry I to other 3 X_3 i_3 z_{31} z_{32} z_{33} z_{34} c_3 g_3 e_3 industries X_4 4 i_4 z_{41} z_{43} z_{44} g_4 z_{42} c_4 e_4 Labor l_1 l_2 l_3 l_4 L Primary input factors k_1 Capital k_2 k_3 k_4 Κ 0 Government o_1 o_3 O_4 o_2 Import Μ m_1 m_2 m_3 m_4 Total Z_1 \mathbb{Z}_2 Z_3 Z_4 С G Ε I (Z)

Input flow from other industries to Industry I

INPUT-OUTPUT TABLE EXAMPLE

	То	Industry				Final demand categories (F)				
From		1	2	3	4	Households	Government	Investments	Export	Total (X)
Industry	1	z_{11}	z_{12}	z_{13}	z_{14}	c_1	g_1	i_1	e_1	X_1
	2	z_{21}	z_{22}	z_{23}	z_{24}	c_2	g_2	i_2	e_2	X_2
	3	z_{31}	z_{32}	z_{33}	z_{34}	c_3	g3	i_3	e_3	X_3
	4	z_{41}	z_{42}	z_{43}	z_{44}	c_4	g_4	i_4	e_4	X_4
Primary input factors	Labor	l_1	l_2	l_3	l_4					L
	Capital	k_1	k_2	k_3	k_4					К
	Government	o_1	02	03	04					0
	Import	m_1	m_2	m_3	m_4					М
Total (Z)		Z 1	Z ₂	Z ₃	Z ₄	С	G	I	Е	

/ External economic shock

- External economic shocks result in the unbalance of the I-O table;
- I-O table has to be rebalanced to reveal the influence on the whole economic system.
- I-O table can also be extended to analyze environmental impacts, such as carbon emission and air pollution and energy consumption.

EXAMPLE

External Shock

- Energy prices surged 20%
- The price of each barrel of crude oil increased and averaged \$106.96, up by 15.3% (used to be \$92.77).

Direct Impact

- Consumers primarily purchase less durable goods, such as new houses and cars;
- Firms minimize their investment spending owing to uncertainty.

Spillover Effect

- Impact on real GDP;
- Lead to a fall in social surplus, decelerating economic growth;
- Result in higher global costs.

KEY PROCESSES OF ENERGY MODELLING

 Data on energy demand, supply, prices, technology performance, and environmental factors; Ensure data quality and consistency. 	 Assume future conditions; Explore different potential futures. 	 I. Formulate mathematical equations and algorithms that simulate energy flows, technology dynamics, and policy interactions; 2. Ensure that the models accurately reflect real-world behavior. 	 Analyze the sensitivity of results to changes in input parameters and assumptions. Identify the key drivers and uncertainties in the model's outcomes. Uncertainty assessment techniques, e.g. Monte Carlo simulations. 	 Evaluate the impacts of different scenarios; Assess key performance indicators; Identify trade-offs and synergies among various objectives, such as cost, emissions, and energy security.
Data Collection and Validation	Assumptions and Scenario Development	Model Formulation and Calibration	Sensitivity Analysis and Uncertainty Assessment	Output Analysis and Interpretation

APPLICATIONS

Case study and future trends

IEA'S GLOBAL ENERGY AND CLIMATE (GEC) MODEL

Source: https://www.iea.org/reports/global-energy-and-climate-model/about-the-global-energy-and-climate-model

IEA'S GLOBAL ENERGY AND CLIMATE (GEC) MODEL

- Final energy demand, covering industry, transport, buildings, agriculture and other non-energy use. This is driven by detailed modelling of energy service and material demand.
- Energy transformation, including electricity generation and heat production, refineries, the production of biofuels, hydrogen and hydrogen-derived fuels and other energy-related processes, as well as related transmission and distribution systems, storage and trade.
- Energy supply, including fossil fuels exploration, extraction and trade, and availability of renewable energy resources.

- Inputs to the model include: historical technology stock, cost and performance; energy statistics and balance data; policies and regulations; and socio-economic drivers.
- **Outputs** from the model include: projected technology stock, cost, and performance; energy flows by fuel; investment needs and costs; materials and critical minerals demand; CO2 and methane emissions.
- Prices, which are both inputs and outputs of the model, include: fuel, end-user and CO2 prices.

Source: https://www.iea.org/reports/global-energy-and-climate-model/about-the-global-energy-and-climate-model

CAPABILITIES AND FEATURES OF GEC MODEL

Global and regional energy trends:

 This includes assessment of energy demand, supply availability and constraints, international trade and energy balances by sector and by fuel;

Environmental impact of energy use:

- CO2 emissions from fuel combustion, CO2 process emissions, Methane from oil and gas operations are measured, which makes it possible to publish the CO2-equivalend emissions for the entire energy sector;
- Local air pollutants are also estimated and the temperature outcomes of modelled scenarios are assessed.

Policy and technology developments:

 Alternative scenarios analyze the impact of a range of policy actions and technological developments on energy demand, supply, trade, investments and emissions.

TAKEAWAYS

Takeaways from today's workshop

TAKEAWAYS

Background

- Energy modelling does not predict the future, but provides insight for policy decisions and discussions;
- Choice of energy modelling tools is defined by the question to be analysed;
- A general change happened in the discourse from predominantly supply-side techno-economic solutions to more inclusive solutions that also consider societal and political factors.

Methodology

- Environmentally Extended Input-Output Analysis (EEIOA), which takes environment-related inputs into account by adding additional columns of inputs such as gasoline and coals.
- Life cycle thinking is important when evaluating the emission of a product or process;
- Optimization is the process of improving operational parameter, algorithm or energy system to reduce costs/emissions or increase efficiency/profit.

Application

 Models are being developed to assess the impact of renewable energy integration on grid stability, energy costs, and environmental sustainability;

THANK YOU

Q & A

Jiatai Wang jiatai.wang@surrey.ac.uk www.surrey.ac.uk/ces

GROUP DISCUSSION

SOLVING PROBLEMS

GROUP DISCUSSION ENERGY MODELLING TOOLS

SURVEY Please Complete The Survey Sheet

END

Thank you for attending this workshop